TCEQ Interoffice Memorandum **To:** Tony Walker Director, TCEQ Region 4, Dallas/Fort Worth Alyssa Taylor Special Assistant to the Regional Director, TCEQ Region 4, Dallas/Fort Worth From: Shannon Ethridge, M.S., D.A.B.T. &E. Toxicology Division, Office of the Executive Director **Date:** May 2, 2016 **Subject:** Toxicological Evaluation of Results from an Ambient Air Sample for Volatile Organic Compounds Collected Downwind of the Empire Pipeline Corporation, Cresson Compressor Station (Latitude 32.536622, Longitude -97.627138) near Cresson, Hood County, Texas Sample Collected on January 5, 2016, Request Number 1601007 (Lab Sample 1601007-001) # **Key Points** • Reported concentrations of target volatile organic compounds (VOCs) were either not detected or were detected below levels of short-term health and/or welfare concern. # Background On January 5, 2016, a Texas Commission on Environmental Quality (TCEQ) Region 4 air investigator collected a 30-minute canister sample (Lab Sample 1601007-001) downwind of the Empire Pipeline Corporation, Cresson Compressor Station (Latitude 32.536622, Longitude -97.627138) near Cresson, Hood County, Texas. The sample was collected in response to a hand-held VOC device reading. The investigator did not experience odors or health effects while sampling. Meteorological conditions measured at the site or nearest stationary ambient air monitoring site indicated that the ambient temperature was 34°F with a relative humidity of 78%, and winds were from the east southeast (120°) at 3.3 to 9.2 miles per hour. The distance between the sampling site and the possible source (tanks) was approximately 301 to 500 feet. The distance between the nearest location where the public could have access and the possible emission source (tanks) was greater than 500 feet. The sample was sent to the TCEQ laboratory in Austin, Texas, and analyzed for a range of VOCs. The list of the target analytes that were evaluated in this review is provided in Attachment A. The VOC concentrations were reported in parts per billion by volume (ppbv) (Attachment B and Table 1). Please note that the Tony Walker et al. Page 2 May 2, 2016 available canister technology and analysis method cannot capture and/or analyze for all chemicals. #### **Results and Evaluation** Reported VOC concentrations were compared to TCEQ's short-term health- and/or welfare-based air monitoring comparison values (AMCVs) (Table 1). Short-term AMCVs are guidelines used to evaluate ambient concentrations of a chemical in air and to determine its potential to result in adverse health effects, adverse vegetative effects, or odors. Health AMCVs are set to provide a margin of safety and are set well below levels at which adverse health effects are reported in the scientific literature. If a chemical concentration in ambient air is less than its comparison value, no adverse health effects are expected to occur. If a chemical concentration exceeds its comparison value it does not necessarily mean that adverse effects will occur, but rather that further evaluation is warranted. All of the 84 VOCs were either not detected or were detected below their respective short-term AMCVs. Exposure to levels of VOCs measured in this sample would not be expected to cause short-term adverse health effects, adverse vegetative effects, or odors. Please call me at (512) 239-1822 if you have any questions regarding this evaluation. Tony Walker et al. Page 3 May 2, 2016 #### Attachment A ## **List of Target Analytes for Canister Samples** ethane ethylene acetylene propane propylene dichlorodifluoromethane methyl chloride isobutane vinyl chloride 1-butene 1,3-butadiene n-butane t-2-butene bromomethane c-2-butene 3-methyl-1-butene isopentane trichlorofluoromethane 1-pentene n-pentane isoprene t-2-pentene 1,1-dichloroethylene c-2-pentene methylene chloride 2-methyl-2-butene 2,2-dimethylbutane cyclopentene 4-methyl-1-pentene 1,1-dichloroethane cyclopentane 2,3-dimethylbutane 2-methylpentane 3-methylpentane 2-methyl-1-pentene + 1-hexene n-hexane chloroform t-2-hexene c-2-hexene 1,2-dichloroethane methylcyclopentane 2,4-dimethylpentane 1,1,1-trichloroethane benzene carbon tetrachloride cyclohexane 2-methylhexane 2,3-dimethylpentane 3-methylhexane 1,2-dichloropropane trichloroethylene 2,2,4-trimethylpentane 2-chloropentane n-heptane c-1,3-dichloropropylene methylcyclohexane t-1,3-dichloropropylene 1,1,2-trichloroethane 2,3,4-trimethylpentane toluene 2-methylheptane 3-methylheptane 1,2-dibromoethane n-octane tetrachloroethylene chlorobenzene ethylbenzene m & p-xylene styrene 1,1,2,2-tetrachloroethane o-xylene n-nonane isopropylbe isopropylbenzene n-propylbenzene m-ethyltoluene p-ethyltoluene 1,3,5-trimethylbenzene o-ethyltoluene 1,2,4-trimethylbenzene n-decane 1,2,3-trimethylbenzene m-diethylbenzene p-diethylbenzene n-undecane Tony Walker et al. Page 4 May 2, 2016 **Attachment B** 1/14/2016 ### Texas Commission on Environmental Quality Laboratory and Quality Assurance Section P.O. Box 13087, MC-165 Austin, Texas 78711-3087 (512) 239-1716 | Laboratory Analysis Results Request Number: 1601007 | | | | | | | |--|------------------------|----------------|--|--|--|--| | Request Lead:Frank Martinez
Project(s): Barnett Shale | Region: T04 | Date Rec | eived: 1/11/2016 | | | | | Facility(ies) Sampled | City | County | Facility Type | | | | | Empire Pipeline Corporation, Cresson Compressor Stati | Cresson | Hood | | | | | | Sample(s) Received | | 1 | | | | | | Field ID Number: N0434-031-0116 Laboratory 3 Sampling Site: Empire Pipeline Corporation, Cresson Co Comments: Canister N0434 was used to collect a 30-min Requested Laboratory Procedure(s): Analysis: AP001VOC | | pled: 01/05/16 | mpled by: Robin Pugh
10:15:00 Valid Sample: Yes | | | | | Determination of VOC Canisters by GC/MS Using Modif | fied Method TO-15 | | | | | | | Please note that this analytical technique is not of adverse health effects. For questions on the ana (512) 239-1716. For an update on the health eff Division at (512) 239-1795. | lytical procedures ple | ase contact th | ne laboratory manager at | | | | | Analyst: Aaron Bluhm | | Date: | 114/16 | | | | | Laboratory Manager: | | Date: // | 19/Ka_ | | | | # Laboratory Analysis Results Request Number: 1601007 Analysis Code: AP001VOC | Note: Results are reported in uni | ts or ppev | | | | | | | | | | |-----------------------------------|------------|-------|-------|------------------|-------------------|--------------|-----|-----|--|---------| | Lab ID | | | 1601 | 007-001 | | | | | | | | Field ID | | | N0434 | -031-0116 | | | | | | | | Canister ID | | | 1 | 10434 | | | | | | | | Compound | Conc. | SDL | SQL | Analysis
Date | Flags** | Cone. | SDL | SQL | Analysis
Date | Flags** | | ethane | 80 | 1.0 | 2.4 | 1/14/2016 | T,D1 | | | | | | | ethylene | 1.1 | 1.0 | 2.4 | 1/14/2016 | E,T,D1 | i | | | i | | | noetylene | - ND | 1.0 | 2.4 | 1/14/2016 | T,D1 | <u> </u> | | | - 1 | | | propane | 27 | 1.0 | 2,4 | 1/14/2016 | T,DI | | | | | | | propylene | ND | 1.0 | 2.4 | 1/14/2016 | T,D1 | - | | | | | | dichlorodiffuoremethane | 0.49 | 0.49 | 1.2 | 1/14/2016 | L,D1 | | | | 1 | | | methyl chloride | 0.57 | 0.40 | 1.2 | 1/14/2016 | L ₂ D1 | 1 | | | · · · · · · | | | isobutane | 4.9 | 0.46 | 2.4 | 1/14/2016 | DI | | | | | | | vinyl chloride | ND | 0.34 | 1.2 | 1/14/2016 | Dl | - | | | | | | -buteno | GN | 0.40 | 1.2 | 1/14/2016 | DI | + | | | | | | 1,3-butadiene | ND | 0.54 | 1.2 | 1/14/2016 | DI | | | | | | | n-butane | 8.3 | 0.40 | 2.4 | 1/14/2016 | DI | - | | | | | | -2-butene | ND | 0.36 | 1.2 | 1/14/2016 | DI | 1 | | | 1 | | | oromotaethane | ND | 0.54 | 1,2 | 1/14/2016 | DI | - | | | | | | :-2-butone | 0.01 | 0.54 | 1,2 | 1/14/2016 | J,DI | | | | | | | 3-methyl-1-butene | ND | 0.46 | 1.2 | 1/14/2016 | D1 | | | | | | | sopentane | 2.1 | 0.54 | 4.8 | 1/14/2016 | L,D1 | | | | - | | | richlorofluoromethane | 0.24 | 0.54 | 1.2 | 1/14/2016 | J,DI | | | | | | | I-pentene | ND | 0.54 | 1.2 | 1/14/2016 | D1 | - | | | | | | • | 1.5 | 0.54 | 4.8 | | | | | | | | | 1-pentane | | | - | 1/14/2016 | L,D1 | | | | | | | soprene | ND | 0.54 | 1.2 | 1/14/2016 | Dl | | | | | | | -2-pentene | ND | 0.54 | 2.4 | 1/14/2016 | D) | | | | | | | 1,1-dichlomethylene | ND | 0.36 | 1,2 | 1/14/2016 | D1 | | | | | | | -2-pentene | ND | 0.50 | 2.4 | 1/14/2016 | D1 | | | | | | | methylene chloride | 0.10 | 0.28 | 1.2 | 1/14/2016 | J,DI | | | | | | | 2-methyl-2-butene | ND | 0.46 | 1.2 | 1/14/2016 | DI | | | | | | | 2,2-dimethylhutane | 0.05 | 0.42 | 1.2 | 1/14/2016 | J,DI | | | | | | | cyclopentene | ND | 0.40 | 1.2 | 1/14/2016 | D1 | ļ | | | | | | I-methyl-1-pentene | ND | 0.44 | 2.4 | 1/14/2016 | D1 | | | | | | | ,l-dichloroethane | ND | 0.38 | 1.2 | 1/14/2016 | DI | | | | | | | cyclopentane | 0.04 | .0.54 | 1.2 | 1/14/2016 | J,DI | | | | | | | 2,3-dimethylbutane | 0.07 | 0.56 | 2,4 | 1/14/2016 | J,Dt | | | | | | | 2-methylpentane | 0.53 | 0.54 | 1.2 | 1/14/2016 | J,DI | | | | | | | 3-methylpentane | 0.27 | 0.46 | 1.2 | 1/14/2016 | J,DI | | | | | | | t-methyl-1-pentene + 1-hexene | ND | 0,40 | 4.8 | 1/14/2016 | D1 | | | | | | | ı-hexane | 0.45 | 0.40 | 2,4 | 1/14/2016 | L ₂ D1 | | | | | | | hkoroform | ND | 0.42 | 1.2 | 1/14/2016 | DI | | | | | | | -2-hexene | ND | 0.54 | 2.4 | 1/14/2016 | DI | | | | | | | -2-hexene | ND | 0.54 | 2,4 | 1/14/2016 | DI | | | | | | | ,2-dichloroethane | ND | 0.54 | 1.2 | 1/14/2016 | DI | ĺ | | | | | | nethyloyolopentane | 0.10 | 0.54 | 2.4 | 1/14/2016 | J,DI | 1 | | | 1 | | | ,4-dimethylpentane | 0.02 | 0.54 | 2.4 | 1/14/2016 | J,D1 | <u> </u> | | | | | | ,1,1-trichloroethane | 0.02 | 0.52 | 1.2 | 1/14/2016 | J,D1 | | | | | | | enzeae | 0.46 | 0.54 | 1.2 | 1/14/2016 | J,D1 | 1 | | | - | | | arbon tetrachloride | 0.11 | 0.54 | 1.2 | 1/14/2016 | J,D1 | i | | | | | | yelohexane | 0.15 | 0.48 | 1.2 | 1/14/2016 | J,D1 | 1 | | | - | | | -methylhexane | 0.16 | 0.54 | 1.2 | 1/14/2016 | J,Dl | - | | | | | | 2,3-dimethylpentane | ND | 0.52 | 1.2 | 1/14/2016 | D1 | 1 | | | - | | ## Laboratory Analysis Results Request Number: 1601007 Analysis Code: AP001VOC | Note: Results are reported in | units of ppbv | | | | | | | | | | |-------------------------------|---------------|------|------|------------------|---------|--|------|-----|------------------|---------| | Lab ID | | | 1601 | 007-001 | | | | | | | | Compound. | Conc. | SDL | SQL | Analysis
Date | Flags** | Conc. | \$DL | SQL | Analysis
Date | Flags** | | 3-methylhexane | 0.15 | 0.40 | 1.2 | 1/14/2016 | J,D1 | | | | | | | 1,2-dichloropropane | ИD | 0.34 | 1.2 | 1/14/2016 | DI | | | | | | | trichloroethylene | ND | 0.58 | 1.2 | 1/14/2016 | DI | i | | | | | | 2,2,4-trimethylpentane | ND | 0.48 | 1.2 | 1/14/2016 | Dí | | | | i | | | 2-chloropentane | ND | 0.54 | 1.2 | 1/14/2016 | DI | | | | | | | n-heptane | 0.17 | 0.50 | 2.4 | 1/14/2016 | J,D1 | | | | | | | c-1,3-dichloropropylene | ND | 0.40 | 1.2 | 1/14/2016 | D1 | | | | | | | methyloyolohexane | ND | 0.52 | 2.4 | 1/14/2016 | D1 | | | | | | | t-1,3-dichioropropylene | ND | 0.40 | 1.2 | 1/14/2016 | DI | | | | | | | 1,1,2-trichloroethane | ND | 0.42 | 1.2 | 1/14/2016 | D1 | | | | | | | 2,3,4-trimethylpentane | ND | 0.48 | 2.4 | 1/14/2016 | D1 | | | | i | | | toluene | 0.20 | 0.54 | 1.2 | 1/14/2016 | J,D1 | 1 | | | | | | 2-methylheptane | 0.03 | 0.40 | 2.4 | 1/14/2016 | J,D1 | | | | | | | 3-methylheptane | 0,02 | 0,46 | 2.4 | 1/14/2016 | J,DI | i | | | | | | 1,2-dibromoethane | ND | 0.40 | 1.2 | 1/14/2016 | D1 | i | | | i | | | n-octane | 0.03 | 0.38 | 2.4 | 1/14/2016 | J,DI | | | | | | | tetrachloroethylene | 0.01 | 0.48 | 1.2 | 1/14/2016 | J,DI | | | | i | | | chlorobenzene | ND | 0.54 | 1,2 | 1/14/2016 | D1 | | | | | | | ethylbenzene | ND | 0.54 | 2.4 | 1/14/2016 | DI | | | | | | | m & p-xylene | 0.04 | 0.54 | 4.8 | 1/14/2016 | J,DI | | | | | | | styrene | 0,01 | 0.54 | 2,4 | 1/14/2016 | J,D1 | | | | | | | 1,1,2,2-tetrachloroethane | ND | 0.40 | 1.2 | 1/14/2016 | DI | 1 | | | | | | o-xylene | ND | 0.54 | 2,4 | 1/14/2016 | DI | 1 | | | | | | n-nonane | ND | 0.44 | 1.2 | 1/14/2016 | DI | | | | | | | sopropylbenzene | ND | 0.48 | i.2 | 1/14/2016 | DI | | | | <u> </u> | | | n-propylbenzene | ND | 0.54 | 1,2 | 1/14/2016 | DI | i | | | | | | m-ethyltoluene | ND | 0.22 | 1.2 | 1/14/2016 | D1 | 1 | | | | | | p-ethyltoluene | ND | 0.32 | 2.4 | 1/14/2016 | DI | | | | | | | 1,3,5-trimethylbenzene | ND | 0.50 | 2.4 | 1/14/2016 | DI | 1 | | | - | | | o-ethyltoluene | ND | 0.26 | 2,4 | 1/14/2016 | DI | | | | | | | 1,2,4-trinicthylbenzene | ND | 0.54 | 1.2 | 1/14/2016 | DI | | | | | | | n-decane | ND | 0.54 | 2.4 | 1/14/2016 | Dt | | | | | | | 1,2,3-trimethylbenzene | ND | 0.54 | 1,2 | 1/14/2016 | Dl | | | | | | | m-diethylbenzene | ND | 0.54 | 2.4 | 1/14/2016 | DI | 1 | | | | | | p-diethylbenzene | ND | 0.54 | 1.2 | 1/14/2016 | Dί | | | | | | | n-undecane | ND | 0.54 | 2.4 | 1/14/2016 | Dl | | | | | | ### Laboratory Analysis Results Request Number: 1601007 Analysis Code: AP001VOC #### Qualifier Notes: - ND not detected - NQ concentration can not be quantified due to possible interferences or coelutions. SDL Sample Detection Limit (Limit of Detection adjusted for dilutions). - SQL Sample Quantitation Limit (Limit of Quantitation adjusted for dilution). - INV Invalid. - J Reported concentration is below SDL, - L Reported concentration is at or above the SDL and is below the lower limit of quantitation. - E Reported concentration exceeds the upper limit of instrument calibration, - M Result modified from previous result. - T- Data was not confirmed by a confirmational analysis. Compound and/or results is tentatively identified. - F Established acceptance criteria was not met due to factors outside the laboratory's control. - H Not all associated hold time specifications were met, Data may be biased. - C Sample received with a missing or broken custody sent. - R Sample received with a missing or incomplete chain of custody. - Sample received without a legible unique identifier. - G Sample received in an improper container. - U Sample received with insufficient sample volume. - W Sample received with insufficient preservation. Quality control notes for AP001YOC samples. D1-Sample concentration was calculated using a dilution factor of 4. TCEQ laboratory customer support may be reached at Frank.Martinez@tceq.texas.gov The TCEQ is an equal opportunity/affirmative action employer. The agency does not allow discrimination on the basis of race, color, religion, national origin, sex, disability, age, sexual orientation or veteran status. In compliance with the Americans With Disabilities Act, this document may be requested in alternate formats by contacting the TCEQ at (512) 239-0010, (Fax 512-239 -0055), or 1-800-RELAY-TX (TDD), or by writing P.O. Box 13087, Austin, Texas 78711-3087. Tony Walker et al. Page 8 May 2, 2016 Table 1. Comparison of Monitored Concentrations in Lab Sample 1601007-001 to TCEQ Short-Term AMCVs | Lab Sample ID | 1601007-001 | | | | | | |-----------------------------------|----------------------------------|---|----------------------------|------------------------------------|-------|----------------------------| | Compound | Odor AMCV
(ppb _v) | Short-Term Health
AMCV (ppb _v) | SQL
(ppb _v) | Concentrations (ppb _v) | Flags | SDL
(ppb _v) | | 1,1,1-Trichloroethane | | 1,700 | 1.2 | 0.02 | J,D1 | 0.52 | | 1,1,2,2-Tetrachloroethane | | 10 | 1.2 | ND | D1 | 0.4 | | 1,1,2-Trichloroethane | | 100 | 1.2 | ND | D1 | 0.42 | | 1,1-Dichloroethane | | 1,000 | 1.2 | ND | D1 | 0.38 | | 1,1-Dichloroethylene | | 180 | 1.2 | ND | D1 | 0.36 | | 1,2,3-Trimethylbenzene | | 3000 | 1.2 | ND | D1 | 0.54 | | 1,2,4-Trimethylbenzene | | 3000 | 1.2 | ND | D1 | 0.54 | | 1,2-Dibromoethane | | 0.5 | 1.2 | ND | D1 | 0.4 | | 1,2-Dichloroethane | | 40 | 1.2 | ND | D1 | 0.54 | | 1,2-Dichloropropane | | 100 | 1.2 | ND | D1 | 0.34 | | 1,3,5-Trimethylbenzene | | 3000 | 2.4 | ND | D1 | 0.5 | | 1,3-Butadiene | 230 | 1,700 | 1.2 | ND | D1 | 0.54 | | 1-Butene | | 27,000 | 1.2 | ND | D1 | 0.4 | | 1-Pentene | 100 | 4,500 | 1.2 | ND | D1 | 0.54 | | 2,2,4-Trimethylpentane | | 750 | 1.2 | ND | D1 | 0.48 | | 2,2-Dimethylbutane (Neohexane) | | 1,000 | 1.2 | 0.05 | J,D1 | 0.42 | | 2,3,4-Trimethylpentane | | 750 | 2.4 | ND | D1 | 0.48 | | 2,3-Dimethylbutane | | 990 | 2.4 | 0.07 | J,D1 | 0.56 | | 2,3-Dimethylpentane | | 850 | 1.2 | ND | D1 | 0.52 | | 2,4-Dimethylpentane | | 850 | 2.4 | 0.02 | J,D1 | 0.54 | | 2-Chloropentane (as chloroethane) | | 240 | 1.2 | ND | D1 | 0.54 | | 2-Methyl-1-Pentene +1-Hexene | | 500 | 4.8 | ND | D1 | 0.4 | | 2-Methyl-2-Butene | | 4500 | 1.2 | ND | D1 | 0.46 | | 2-Methylheptane | | 750 | 2.4 | 0.03 | J,D1 | 0.4 | Tony Walker et al. Page 9 May 2, 2016 | Lab Sample ID | 1601007-001 | | | | | | | | |---------------------------------|----------------------------------|---|----------------------------|------------------------------------|--------|----------------------------|--|--| | Compound | Odor AMCV
(ppb _v) | Short-Term Health
AMCV (ppb _v) | SQL
(ppb _v) | Concentrations (ppb _v) | Flags | SDL
(ppb _v) | | | | 2-Methylhexane | | 750 | 1.2 | 0.16 | J,D1 | 0.54 | | | | 2-Methylpentane (Isohexane) | | 850 | 1.2 | 0.53 | J,D1 | 0.54 | | | | 3-Methyl-1-Butene | 100 | 8,000 | 1.2 | ND | D1 | 0.46 | | | | 3-Methylheptane | | 750 | 2.4 | 0.02 | J,D1 | 0.46 | | | | 3-Methylhexane | | 750 | 1.2 | 0.15 | J,D1 | 0.4 | | | | 3-Methylpentane | | 1,000 | 1.2 | 0.27 | J,D1 | 0.46 | | | | 4-Methyl-1-Pentene (as hexene) | | 500 | 2.4 | ND | D1 | 0.44 | | | | Acetylene | | 25,000 | 2.4 | ND | T,D1 | 1 | | | | Benzene | | 180 | 1.2 | 0.46 | J,D1 | 0.54 | | | | Bromomethane (methyl bromide) | | 30 | 1.2 | ND | D1 | 0.54 | | | | c-1,3-Dichloropropylene | | 10 | 1.2 | ND | D1 | 0.4 | | | | c-2-Butene | | 15,000 | 1.2 | 0.01 | J,D1 | 0.54 | | | | c-2-Hexene | | 500 | 2.4 | ND | D1 | 0.54 | | | | c-2-Pentene | | 4,500 | 2.4 | ND | D1 | 0.5 | | | | Carbon Tetrachloride | | 20 | 1.2 | 0.11 | J,D1 | 0.54 | | | | Chlorobenzene (phenyl chloride) | | 100 | 1.2 | ND | D1 | 0.54 | | | | Chloroform (trichloromethane) | | 20 | 1.2 | ND | D1 | 0.42 | | | | Cyclohexane | | 1,000 | 1.2 | 0.15 | J,D1 | 0.48 | | | | Cyclopentane | | 1,200 | 1.2 | 0.04 | J,D1 | 0.54 | | | | Cyclopentene | | 2,900 | 1.2 | ND | D1 | 0.4 | | | | Dichlorodifluoromethane | | 10,000 | 1.2 | 0.49 | L,D1 | 0.4 | | | | Ethane | | *Simple Asphyxiant | 2.4 | 80 | T,D1 | 1 | | | | Ethylbenzene | | 20,000 | 2.4 | ND | D1 | 0.54 | | | | Ethylene | | 500,000 | 2.4 | 1.1 | L,T,D1 | 1 | | | | Isobutane | | 33,000 | 2.4 | 4.9 | D1 | 0.46 | | | Tony Walker et al. Page 10 May 2, 2016 | Lab Sample ID | 1601007-001 | | | | | | |--------------------------------------|----------------------------------|--|----------------------------|---------------------------------------|-------|----------------------------| | Compound | Odor AMCV
(ppb _v) | Short-Term Health AMCV (ppb _v) | SQL
(ppb _v) | Concentrations
(ppb _v) | Flags | SDL
(ppb _v) | | Isopentane (2-methylbutane) | | 68,000 | 4.8 | 2.1 | L,D1 | 0.54 | | Isoprene | 48 | 20 | 1.2 | ND | D1 | 0.54 | | Isopropylbenzene (cumene) | 130 | 500 | 1.2 | ND | D1 | 0.48 | | m & p-Xylene (as mixed isomers) | | 1,700 | 4.8 | 0.04 | J,D1 | 0.54 | | m-Diethylbenzene | | 460 | 2.4 | ND | D1 | 0.54 | | Methyl Chloride (chloromethane) | | 500 | 1.2 | 0.57 | L,D1 | 0.4 | | Methylcyclohexane | | 4,000 | 2.4 | ND | D1 | 0.52 | | Methylcyclopentane | | 750 | 2.4 | 0.1 | J,D1 | 0.54 | | Methylene Chloride (dichloromethane) | | 3,500 | 1.2 | 0.1 | J,D1 | 0.28 | | m-Ethyltoluene | | 250 | 1.2 | ND | D1 | 0.22 | | n-Butane | | 92,000 | 2.4 | 8.3 | D1 | 0.4 | | n-Decane | | 1,750 | 2.4 | ND | D1 | 0.54 | | n-Heptane | | 850 | 2.4 | 0.17 | J,D1 | 0.5 | | n-Hexane | | 1,800 | 2.4 | 0.45 | L,D1 | 0.4 | | n-Nonane | | 2,000 | 1.2 | ND | D1 | 0.44 | | n-Octane | | 750 | 2.4 | 0.03 | J,D1 | 0.38 | | n-Pentane | | 68,000 | 4.8 | 1.5 | L,D1 | 0.54 | | n-Propylbenzene | | 500 | 1.2 | ND | D1 | 0.54 | | n-Undecane | | 550 | 2.4 | ND | D1 | 0.54 | | o-Ethyltoluene | | 250 | 2.4 | ND | D1 | 0.26 | | o-Xylene | | 1,700 | 2.4 | ND | D1 | 0.54 | | p-Diethylbenzene | | 460 | 1.2 | ND | D1 | 0.54 | | p-Ethyltoluene | | 250 | 2.4 | ND | D1 | 0.32 | | Propane | | *Simple Asphyxiant | 2.4 | 27 | T,D1 | 1 | | Propylene | | *Simple Asphyxiant | 2.4 | ND | T,D1 | 1 | Tony Walker et al. Page 11 May 2, 2016 | Lab Sample ID | 1601007-001 | 1601007-001 | | | | | | | |-------------------------|----------------------------------|---|----------------------------|------------------------------------|-------|----------------------------|--|--| | Compound | Odor AMCV
(ppb _v) | Short-Term Health
AMCV (ppb _v) | SQL
(ppb _v) | Concentrations (ppb _v) | Flags | SDL
(ppb _v) | | | | Styrene | 25 | 5,100 | 2.4 | 0.01 | J,D1 | 0.54 | | | | t-1,3-Dichloropropylene | | 10 | 1.2 | ND | D1 | 0.4 | | | | t-2-Butene | | 15,000 | 1.2 | ND | D1 | 0.36 | | | | t-2-Hexene | | 500 | 2.4 | ND | D1 | 0.54 | | | | t-2-Pentene | | 4,500 | 2.4 | ND | D1 | 0.54 | | | | Tetrachloroethylene | | 1,000 | 1.2 | 0.01 | J,D1 | 0.48 | | | | Toluene | | 4,000 | 1.2 | 0.2 | J,D1 | 0.54 | | | | Trichloroethylene | | 100 | 1.2 | ND | D1 | 0.58 | | | | Trichlorofluoromethane | | 10,000 | 1.2 | 0.24 | J,D1 | 0.58 | | | | Vinyl Chloride | | 26,000 | 1.2 | ND | D1 | 0.34 | | | ^{*}A simple asphyxiant displaces air, lowering the partial pressure of oxygen and causing hypoxia at sufficiently high concentrations. ppbv - Parts per billion by volume. ND - Not detected. NQ - Concentration can not be quantified due to possible interferences or coelutions. SDL - Sample Detection Limit (Limit of Detection adjusted for dilution). SQL – Sample Quantitation Limit (Limit of Quantitation adjusted for dilution). INV - Invalid. - J Reported concentration is below SDL. - L Reported concentration is at or above the SDL and is below the lower limit of quantitation. - E Reported concentration exceeds the upper limit of instrument calibration. - M Result modified from previous result. - T Data was not confirmed by a confirmational analysis. Data is tentatively identified. - F Established acceptance criteria were not met due to factors outside the laboratory's control. - H Not all associated hold time specifications were met. Data may be biased. - C Sample received with a missing or broken custody seal. - R Sample received with a missing or incomplete chain of custody. Tony Walker et al. Page 12 May 2, 2016 - I Sample received without a legible unique identifier. - G Sample received in an improper container. - U Sample received with insufficient sample volume. - W Sample received with insufficient preservation. - D1 Sample concentration was calculated using a dilution factor of 4. Tony Walker et al. Page 13 May 2, 2016 **Table 2. TCEQ Long-Term Air Monitoring Comparison Values (AMCVs)** Please Note: The long-term AMCVs are provided for informational purposes only because it is scientifically inappropriate to compare short-term monitored values to the long-term AMCV. | Compound | Long-Term Health AMCV (ppb _v) | Compound | Long-Term Health
AMCV (ppb _v) | |-----------------------------------|---|--------------------------------------|--| | 1,1,1-Trichloroethane | 940 | Cyclopentane | 120 | | 1,1,2,2-Tetrachloroethane | 1 | Cyclopentene | 290 | | 1,1,2-Trichloroethane | 10 | Dichlorodifluoromethane | 1,000 | | 1,1-Dichloroethane | 100 | Ethane | *Simple Asphyxiant | | 1,1-Dichloroethylene | 86 | Ethylbenzene | 450 | | 1,2,3-Trimethylbenzene | 37 | Ethylene** | 5,300 | | 1,2,4-Trimethylbenzene | 37 | Isobutane | 2,400 | | 1,2-Dibromoethane | 0.05 | Isopentane (2-methylbutane) | 8,000 | | 1,2-Dichloroethane | 1 | Isoprene | 2 | | 1,2-Dichloropropane | 10 | Isopropylbenzene (cumene) | 50 | | 1,3,5-Trimethylbenzene | 37 | m & p-Xylene (as mixed isomers) | 140 | | 1,3-Butadiene | 9.1 | m-Diethylbenzene | 46 | | 1-Butene | 2300 | Methyl Chloride (chloromethane) | 50 | | 1-Pentene | 210 | Methylcyclohexane | 400 | | 2,2,4-Trimethylpentane | 75 | Methylcyclopentane | 75 | | 2,2-Dimethylbutane (Neohexane) | 100 | Methylene Chloride (dichloromethane) | 100 | | 2,3,4-Trimethylpentane | 75 | m-Ethyltoluene | 25 | | 2,3-Dimethylbutane | 99 | n-Butane | 2,400 | | 2,3-Dimethylpentane | 85 | n-Decane | 175 | | 2,4-Dimethylpentane | 85 | n-Heptane | 85 | | 2-Chloropentane (as chloroethane) | 24 | n-Hexane | 190 | | 2-Methyl-1-Pentene +1-Hexene | 50 | n-Nonane | 200 | | 2-Methyl-2-Butene | 210 | n-Octane | 75 | Tony Walker et al. Page 14 May 2, 2016 | Compound | Long-Term Health AMCV (ppb _v) | Compound | Long-Term Health
AMCV (ppb _v) | |---------------------------------|---|-------------------------|--| | 2-Methylheptane | 75 | n-Pentane | 8,000 | | 2-Methylhexane | 75 | n-Propylbenzene | 50 | | 2-Methylpentane (Isohexane) | 85 | n-Undecane | 55 | | 3-Methyl-1-Butene | 800 | o-Ethyltoluene | 25 | | 3-Methylheptane | 75 | o-Xylene | 140 | | 3-Methylhexane | 75 | p-Diethylbenzene | 46 | | 3-Methylpentane | 100 | p-Ethyltoluene | 25 | | 4-Methyl-1-Pentene (as hexene) | 50 | Propane | *Simple Asphyxiant | | Acetylene | 2,500 | Propylene | *Simple Asphyxiant | | Benzene | 1.4 | Styrene | 110 | | Bromomethane (methyl bromide) | 3 | t-1,3-Dichloropropylene | 1 | | c-1,3-Dichloropropylene | 1 | t-2-Butene | 690 | | c-2-Butene | 690 | t-2-Hexene | 50 | | c-2-Hexene | 50 | t-2-Pentene | 210 | | c-2-Pentene | 210 | Tetrachloroethylene*** | 3.8 | | Carbon Tetrachloride | 2 | Toluene | 1,100 | | Chlorobenzene (phenyl chloride) | 10 | Trichloroethylene | 10 | | Chloroform (trichloromethane) | 2 | Trichlorofluoromethane | 1,000 | | Cyclohexane | 100 | Vinyl Chloride | 0.45 | ^{*}A simple asphyxiant displaces air, lowering the partial pressure of oxygen and causing hypoxia at sufficiently high concentrations. ^{**}Long-term vegetation AMCV for Ethylene is 30 ppb. ^{***}Long-term vegetation AMCV for Tetrachloroethylene is 12 ppb.